Home | Impressum | Datenschutz | Sitemap | KIT

Current Publications

Enderle et al 2019
Enderle et al., (2019) Model of DPC repair in plants.
Schmidt inversion
Schmidt et al. (2019) Schematic representation of the formation of an inversion event after induction of two DSBs
Dorn et al 2018
Dorn et al. (2019) Classification of FANCJB into the interstrand CL repair network of Arabidopsisthaliana.
Wolter et al 2018
Wolter et al. (2019) Direct comparison of ipGT efficiencies using either LbCas12a or SaCas9 as nuclease. Each bar represents the GT efficiency of a single line. The analyzed lines for both approaches are ordered in a descending manner.

The Protease WSS1A, the Endonuclease MUS81, and the Phosphodiesterase TDP1 are Involved in Independent Pathways of DNA-protein Crosslink Repair in Plants

Janina Enderle, Annika Dorn, Natalja Beying, Oliver Trapp and Holger Puchta

Abstract

DNA-protein crosslinks (DPCs) represent a severe threat to the genome integrity; however, the main mechanisms of DPC repair were only recently elucidated in humans and yeast. Here we define the pathways for DPC repair in plants. Using CRISPR/Cas9, we could show that only one of two homologues of the universal repair proteases SPRTN/Wss1, WSS1A, is essential for DPC repair in Arabidopsis thaliana. WSS1A defective lines exhibit developmental defects and are hypersensitive to camptothecin (CPT) and cis-platin. Interestingly, the CRISPR/Cas9 mutants of TYROSYL-DNA PHOSPHODIESTERASE 1 (TDP1) are insensitive to CPT, and only the wss1A tdp1 double mutant reveals a higher sensitivity than the wss1A single mutant. This indicates that TDP1 defines a minor backup pathway in the repair of DPCs. Moreover, we found that knock out of the endonuclease MMS AND UV SENSITIVE PROTEIN 81 (MUS81) results in a strong sensitivity to DPC-inducing agents. The fact that wss1A mus81 and tdp1 mus81 double mutants exhibit growth defects and an increase in dead cells in root meristems after CPT treatment, demonstrates that there are three independent pathways for DPC repair in Arabidopsis. These pathways are defined by their 35 heir different biochemical specificities, as main actors, the DNA endonuclease MUS81 and the protease WSS1A, and the phosphodiesterase TDP1 as backup.

[pdf Download]

 

Efficient induction of heritable inversions in plant genomes using the CRISPR/Cas system

Carla Schmidt, Michael Pacher and Holger Puchta

Abstract

During the evolution of plant genomes, sequence inversions occurred repeatedly making the respective regions inaccessible for meiotic recombination and thus for breeding. Thus, it is important to develop technologies that allow the induction of inversions within chromosomes in a directed and efficient manner. Using the Cas9 nuclease from S. aureus (SaCas9), we were able to obtain scarless heritable inversions with high efficiency in the model plant Arabidopsis thaliana. Via deep sequencing, we defined the patterns of junction formation in wild-type and in the non-homologous end joining (NHEJ) mutant ku70-1. Surprisingly, in plants deficient of KU70, inversion induction is enhanced, indicating that KU70 is required for tethering the local broken ends together during repair. However, in contrast to wild-type, most junctions are formed by microhomology-mediated NHEJ and thus are imperfect with mainly deletions, making this approach unsuitable for practical applications. Using egg cell specific expression of Cas9, we were able to induce heritable inversions at different genomic loci and at intervals between 3 and 18 kb, in the percentage range, in the T1 generation. By screening individual lines, inversion frequencies of up to the 10% range were found in T2. Most of these inversions had scarless junctions and were without any sequence change within the inverted region, making the technology attractive for use in crop plants. Applying our approach, it should be possible to reverse natural inversions and induce artificial ones to break or fix linkages between traits at will.

[pdf Download]

 

An Arabidopsis FANCJ helicase homologue is required for DNA crosslink repair and rDNA repeat stability

Annika Dorn, Laura Feller, Dominique Castri, Sarah Röhrig, Janina Enderle, Natalie J. Herrmann,

Abstract

Proteins of the Fanconi Anemia (FA) complementation group are required for crosslink (CL) repair in humans and their loss leads to severe pathological phenotypes. Here we characterize a homolog of the Fe-S cluster helicase FANCJ in the model plant Arabidopsis, AtFANCJB, and show that it is involved in interstrand CL repair. It acts at a presumably early step in concert with the nuclease FAN1 but independently of the nuclease AtMUS81, and is epistatic to both error-prone and error-free post-replicative repair in Arabidopsis. The simultaneous knock out of FANCJB and the Fe-S cluster helicase RTEL1 leads to induced cell death in root meristems, indicating an important role of the enzymes in replicative DNA repair. Surprisingly, we found that AtFANCJB is involved in safeguarding rDNA stability in plants. In the absence of AtRTEL1 and AtFANCJB, we detected a synergetic reduction to about one third of the original number of 45S rDNA copies. It is tempting to speculate that the detected rDNA instability might be due to deficiencies in G-quadruplex structure resolution and might thus contribute to pathological phenotypes of certain human genetic diseases.

[pdf Download]

 

In planta gene targeting can be enhanced by the use of CRISPR/Cas12a

Felix Wolter and Holger Puchta

 

Abstract

The controlled change of plant genomes by homologous recombination (HR) is still difficult to achieve. We developed the in planta gene targeting (ipGT) technology which depends on the simultaneous activation of the target locus by a DSB and the excision of the target vector. Whereas the use of SpCas9 resulted in low ipGT frequencies in Arabidopsis, we were recently able to improve the efficiency by using egg cell specific expression of the potent but less broadly applicable SaCas9 nuclease. We now tested whether we can improve ipGT further, by either performing it in cells with enhanced intrachromosomal HR efficiencies or by the use of Cas12a, a different kind of CRISPR/Cas nuclease with an alternative cutting mechanism. We could show before that plants possess three kinds of DNA ATPase complexes, which all lead to instabilities of homologous genomic repeats if lost by mutation. As these proteins act in independent pathways, we tested ipGT in double mutants in which intrachromosomal HR is enhanced 20 to 80 fold. However, we were not able to obtain higher ipGT frequencies, indicating that mechanisms for GT and chromosomal repeat-induced HR differ. However, using LbCas12a, the GT frequencies were higher than with SaCas9, despite a lower NHEJ induction efficiency, demonstrating the particular suitability of Cas12a to induce HR. As SaCas9 has substantial restrictions due to its longer GC rich PAM sequence, the use of LbCas12a with its AT-rich PAM broadens the range of ipGT drastically, particularly when targeting in CG-deserts like promoters and introns.

[pdf Download]

 

Engineering CRISPR/LbCas12a for highly efficient, temperature-tolerant plant gene editing 

Patrick Schindele und Holger Puchta

[pdf Download]