EXPERT VIEW

CRISPR/Cas-mediated chromosome engineering: opening up a new avenue for plant breeding

Michelle Rönspies, Patrick Schindele and Holger Puchta*
Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133 Karlsruhe, Germany

* Correspondence: holger.puchta@kit.edu

Received 17 August 2020; Editorial decision 24 September 2020; Accepted 3 October 2020

Editor: John Lunn, MPI of Molecular Plant Physiology, Germany

Abstract

The advent of powerful site-specific nucleases, particularly the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, which enables precise genome manipulation, has revolutionized plant breeding. Until recently, the main focus of researchers has been to simply knock-in or knock-out single genes, or to induce single base changes, but constant improvements of this technology have enabled more ambitious applications that aim to improve plant productivity or other desirable traits. One long-standing aim has been the induction of targeted chromosomal rearrangements (crossovers, inversions, or translocations). The feasibility of this technique has the potential to transform plant breeding, because natural rearrangements, like inversions, for example, typically present obstacles to the breeding process. In this way, genetic linkages between traits could be altered to combine or separate favorable and deleterious genes, respectively. In this review, we discuss recent breakthroughs in the field of chromosome engineering in plants and their potential applications in the field of plant breeding. In the future, these approaches might be applicable in shaping plant chromosomes in a directed manner, based on plant breeding needs.

Keywords: Arabidopsis, chromosomal rearrangements, CRISPR/Cas9, gene editing, genome engineering, inversion, plant breeding, translocation.

Introduction

By crossing and selecting plants with desirable characteristics, humankind has already been genetically manipulating crop plants for thousands of years. Following advances in molecular biology and high-throughput genotyping, breeding efficiency has steadily improved. However, further improvement of current so-called elite crops is limited, e.g. due to the occurrence of linkage-drag or reduced genetic diversity caused by the domestication process (Wolter et al., 2019). The emergence of a new approach, referred to as genome editing, has enabled the precise manipulation of genes by site-specific nucleases such as the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system (Jinek et al., 2012). Its simple composition of a Cas protein and a single guide RNA, together with its ease of use has made the CRISPR/Cas system the method of choice for various applications in plant genome editing (Chen et al., 2019; Schindele...
The induction of double-strand breaks (DSBs) by the Cas nuclease is the crucial step, which stimulates error-prone non-homologous end-joining (NHEJ) or homology-directed repair mechanisms (Puchta, 2005). NHEJ is the predominant repair mechanism in somatic plant cells. Here, re-ligation of the broken ends occasionally results in mutations such as smaller insertions or deletions at the break site (Puchta and Fauser, 2014). If two DSBs are induced simultaneously, this pathway can be harnessed to accomplish large-scale chromosomal rearrangements. These can cover chromosomal inversions, translocations, or deletions (Schmidt et al., 2020b).

Since its introduction as a genome editing tool in 2012 (Jinek et al., 2012), the CRISPR/Cas system has been constantly improved. Whereas, so far, researchers have mainly focused on the knock-in or knock-out of single genes or the induction of single base changes, the development of more powerful genome editing tools has shifted the focus to previously unprecedented approaches. This Expert View aims to cover recent breakthroughs in the field of CRISPR/Cas-mediated chromosome engineering in plants (Box 1). They represent the first steps towards being truly able to shape chromosomes in a directed manner (e.g. by breaking or establishing genetic linkages in crop plants) and they offer new possibilities, e.g. in imitating genome evolution.

Transferring new traits into crop plants

Current elite crops have been selected for desirable traits, such as high yield or improved flavor. However, by selecting those traits, others, such as resistance against several stress conditions...
or nutritional value, were lost (Gruber, 2017). Further improvement of these elite crops by traditional breeding techniques is limited due to the minimal genetic diversity between different cultivars, which has been caused by the long selective domestication process. Introgression of new traits also strongly depends on the occurrence of crossovers (COs) during meiotic recombination to generate novel allelic combinations. However, the number of COs is typically limited to one to three per chromosome, and COs accumulate prevalently in so-called ‘recombination hot spots’ (Mercier et al., 2015). Therefore, adjacent genes from recombination-poor regions are often inherited together. If this so-called linkage drag involves undesirable genetic material, many rounds of backcrossing are required to remove the linkage by classical breeding techniques (Hasan et al., 2015). Typically, genetic linkages can only be disrupted by naturally occurring meiotic recombination events (Taagen et al., 2020). However, the constant development of more efficient CRISPR/Cas tools has introduced new possibilities in this area. Multiplexing provides a novel approach to the induction of chromosomal rearrangements, the generation of genetic diversity, and the manipulation of meiotic recombination. Recent breakthroughs in these areas will be discussed in the following section.

Creation of genetic diversity via de novo domestication

Uncultured varieties of commercial crop plants offer ‘unlocked’ genetic potential, but the transfer of desirable traits into elite crops by classical breeding can take many years (Southgate et al., 1995). However, by targeting multiple, so-called domestication genes (e.g. involved in plant architecture, fruit size, or fruit number) with genome editing tools, this process can be drastically accelerated. Three recent studies demonstrated that de novo domestication can be accomplished using CRISPR/Cas9. The first two studies were published in the same issue of Nature Biotechnology and described the de novo domestication process in a tomato ancestor, Solanum pimpinellifolium, using CRISPR/Cas9 (Zsögön et al., 2018; Li et al., 2018). The third study edited domestication genes in a tomato relative, Physalis pruinosa, despite the previous lack of reference genomes and efficient transformation protocols (Lemmon et al., 2018).

In the first study, Zsögön et al. (2018) simultaneously edited six loci involved in yield and productivity in the wild tomato ancestor, S. pimpinellifolium, to combine favorable traits from commercial and wild tomatoes. Loss-of-function alleles were created using a multiplexing CRISPR/Cas9 approach. The targets included SELF-PRUNING (SP, growth habit), OVAITE (fruit shape), FASCIATED (fruit size), FRUITWEIGHT (fruit weight), MULTIFLORA (fruit number), and LYCOPENE BETA CYCLASE (nutritional value). Only edited alleles were recovered in the T1 generation, demonstrating the high editing efficiency of this approach. Compared with wild S. pimpinellifolium, fruit size was increased 3-fold and fruit numbers were increased 10-fold. Also, the nutritional quality was improved due to an increase of the lycopene content by 500%. All these changes were achieved within a single generation.

In the second study, Li et al. (2018) targeted four stress tolerant wild tomato accessions of S. pimpinellifolium (resistant against bacterial spot disease or salt stress). They used a multiplex CRISPR/Cas9 editing approach to target coding sequences, as well as cis-regulatory elements and upstream open reading frames, of genes involved in shoot architecture (SP), flowering time (SELF PRUNING 5G; SP5G), and fruit size (CLAVATA3 and WUSCHEL). In contrast to Zsögön et al., who recovered only edited alleles, Li et al. observed a variety of mutations, with one to four genes being edited. The plants with all four genes edited showed earlier flowering, determinate growth, and increased fruit size, while retaining their original stress resistance.

In the third study, Lemmon et al. (2018) subjected another member of the Solanaceae family, P. pruinosa, to de novo domestication. Due to their lack of reference genomes, orthologues of tomato domestication genes were identified and selected for editing. To improve the plants’ weedy genomes, orthologues of tomato domestication genes were identified and selected for editing. To improve the plants’ weedy genomes, orthologues of tomato domestication genes were identified and selected for editing. To improve the plants’ weedy genomes, orthologues of tomato domestication genes were identified and selected for editing. To improve the plants’ weedy genomes, orthologues of tomato domestication genes were identified and selected for editing. To improve the plants’ weedy genomes, orthologues of tomato domestication genes were identified and selected for editing. To improve the plants’ weedy genomes, orthologues of tomato domestication genes were identified and selected for editing. To improve the plants’ weedy genomes, orthologues of tomato domestication genes were identified and selected for editing. To improve the plants’ weedy genomes, orthologues of tomato domestication genes were identified and selected for editing.

Chromosome engineering: finally possible

So far, the CRISPR/Cas tools have mainly been used to target single or multiple genes, e.g. by editing open reading frames, regulatory regions, or altering genome and epigenome structure through Cas-mediated scaffolds (Schindele et al., 2020). The recent improvement and development of more powerful genome editing tools has shifted the focus to more ambitious approaches, such as the manipulation of meiotic recombination or large-scale chromosomal restructuring. These may pave the way for novel synthetic plant biology applications. For example, in 2018, CRISPR/Cas-mediated chromosome engineering was successfully used for the generation of a single-chromosome and two-chromosome yeast (Shao et al. (2018) and Luo et al. (2018), respectively).

An obvious possibility for applying targeted chromosomal rearrangements in plant breeding is the induction of crossovers between homologous chromosomes, which aims to manipulate meiotic recombination in certain genomic regions. This approach concentrates on the control of CO rates and CO distribution. During meiosis, homologous recombination
(HR) serves to pair homologous chromosomes for subsequent COs until they become separated again (Lambing et al., 2017). This step also plays an essential role in plant breeding, because meiotic recombination allows for novel allelic combinations. Therefore, manipulation of the number and position of COs has been a longstanding goal. In a novel approach, meiotic recombination was induced at naturally low-recombination sites in the yeast *Saccharomyces cerevisiae* by tethering the Spo11 protein, a subunit of the meiosis initiation machinery, to site-specific DNA-binding modules (Sarno et al., 2017). These included zinc finger nucleases, transcription activator–like effector nucleases and catalytically inactive Cas9 scaffolds. All approaches were able to stimulate CO frequencies in naturally recombination–cold regions, although with only modest efficiency. Some regions were still inaccessible for targeted DSB induction, which might indicate a putative limitation of relying on proteins of the natural meiosis machinery for DSB induction. In contrast to other eukaryotes, plant germ cells differentiate at a late developmental stage (Wang and Ma, 2011), which allows for the inheritance of somatically obtained mutations. Therefore, DSBs do not have to be induced exclusively during meiosis to manipulate genome structures. In an outstanding study, Filler Hayut et al. (2017) demonstrated that targeted DSBs can induce somatic HR using a homologous chromosome as template. In this study, a selection system was developed in tomato hybrids to identify HR between homologous chromosomes, based on a visual marker gene (*PSY*) and single-nucleotide polymorphisms (SNPs). Through induction of allele-specific DSBs, using CRISPR/Cas9, Filler Hayut et al. were able to identify somatic HR events, including gene conversions and a putative crossover event that, unfortunately, could not be transferred to the next generation. This study demonstrated that ‘targeted COs’ via DSB-induced somatic HR can be accomplished. This could provide another way to break genetic linkages but, more importantly, it could also make genetic recombination attainable in a controllable manner (Fig. 1).

Additionally, the CRISPR/Cas system can be utilized to induce chromosomal restructuring. Controlling those kinds of rearrangements can be considered as the next level in plant breeding, because it will help overcome previous bottlenecks. The simultaneous induction of two DSBs can result in inversions or deletions, if they are induced on the same chromosome. They can also lead to translocations, if the DSBs are induced on two different chromosomes. So far, these rearrangements have mainly been induced on a small scale, e.g. by inverting single genes. CRISPR/Cas-mediated inversions of up to 18 kb have been reported in Arabidopsis, by utilizing the *Staphylococcus aureus* Cas9 nuclease in combination with an egg cell–specific promoter (Schmidt et al., 2019). Editing efficiencies of up to 10% were reached in single T2 lines. In contrast, targeted CRISPR/Cas-induced translocations have not been reported until recently.

![Fig. 1. Manipulation of meiotic recombination by generation of targeted COs. If CRISPR/Cas-induced DSBs on both homologous chromosomes are repaired by somatic or meiotic HR, with the respective homologous chromosome as a template, targeted COs can be generated. Red triangles indicate CRISPR/Cas-mediated DSBs.](https://academic.oup.com/jxb/article/72/2/177/6013291)
SNP-based recombination assay, it was revealed that CO rates could be restored within the previously inverted fragment. This demonstrates that evolutionarily emerged inversions can be reversed and that the restoration of meiotic recombination in a previously inaccessible region using an efficient CRISPR/Cas system is attainable. This technique could be applied in plant breeding to make quantitative trait loci, located in evolutionarily derived inversions, accessible to meiotic recombination and, therefore, plant breeding. They can be made accessible for COs again by reverting the inversion through two induced DSBs at the borders of the inversion. Red triangles indicate CRISPR/Cas-mediated DSBs. (A) Quantitative trait loci located in evolutionarily derived inversions are inaccessible to meiotic recombination and, therefore, plant breeding. They can be made accessible for COs again by reverting the inversion through two induced DSBs at the borders of the inversion. Red triangles indicate CRISPR/Cas-mediated DSBs. (B) Targeted inversions can serve to break genetic linkage groups. In this case, one DSB needs to be induced between two linked genes, resulting in the physical separation of the two genes upon inversion induction. Red triangles indicate CRISPR/Cas-mediated DSBs.

In contrast to CRISPR/Cas-induced inversions, there had not been any reports about CRISPR/Cas-mediated translocations in plants prior to this year. They had only been observed as a by-product of CRISPR/Cas genome editing (Peterson et al., 2016). In a groundbreaking study, CRISPR/Cas-induced reciprocal chromosomal translocations were recently achieved in Arabiopsis (Beying et al., 2020). The authors were able to establish a method of generating inheritable targeted translocations. Reciprocal translocations were induced between chromosome 1 and 2, and chromosome 1 and 5, with a size of about 1 Mb and 0.5 Mb, respectively. The translocation frequencies were found to be up to 2.5% in the wild type background and up to 3.75% in the classical NHEJ mutant ku70. Like inversions, translocations play a role in speciation and genome evolution (Lysak et al., 2006; Gabur et al., 2019). The targeted induction of translocations...
provides another opportunity for the breakage, or the fixation, of genetic linkages (Fig. 3). In this way, not only can deleterious genes be decoupled, but desirable traits can also be permanently linked to assure common propagation.

Conclusion

Steady advancements of CRISPR/Cas genome editing tools now enable not only the targeted modification of genes, but also the rearrangement of large chromosomal fragments. As demonstrated by recent accomplishments, such as the induction of chromosomal inversions and translocations, this technique is finally applicable for chromosome engineering approaches in plants. These proof-of-concept studies have shown that the targeted induction of inversions and translocations can, in principle, be used to break genetic linkages with deleterious genes, or to generate linkages between favorable genes, even genes from different chromosomes. These approaches could eventually provide access to a new realm of synthetic biology. Apart from the removal of inhibitory DNA sequences, targeted chromosomal rearrangements pave the way for the creation of synthetic plant chromosomes. As chromosomal rearrangements are often associated with genome evolution and speciation, e.g. by leading to reproductive isolation, even the creation of new species might become feasible by mimicking the processes of genome evolution. However, the use of efficient multiplex editing tools is crucial for these applications (Zhang et al., 2019). In addition, before these new techniques can be applied in crop plants, some hurdles, such as low transformation efficiencies and more demanding genome structures, must still be overcome.

Acknowledgements

The authors wish to thank Daniel Donahey for proofreading the manuscript. This work was supported by the European Research Council (Advanced Grant ‘CRISBREED’).

References

